Préparation et Structure d'un Polyphosphure de Magnésium: MgP₄

ABDALLAH EL MASLOUT, MICHEL ZANNE, FRANÇOIS JEANNOT, ET CHARLES GLEITZER

Laboratoire de Chimie du Solide, Associé au CNRS N⁰. 158, Service de Chimie Minérale A, Case Officielle N⁰. 140, 54037 Nancy Cedex, France

Received April 26, 1974; revised July 12, 1974.

Ce composé est obtenu par action de la vapeur de phosphore sur $Mg_3P_2 a 600^\circ$ C en ampoule scellée. La microdiffraction électronique met en évidence une maille monoclinique primitive; un affinement par les rayons X sur diagramme de poudre conduit aux positions atomiques; il y a isotypie avec CdP₄.

This compound is prepared through reaction of gaseous phosphorus with Mg_3P_2 at 600°C in a sealed silica tube. Evidence for a primitive monoclinic cell is obtained from electron microdiffraction; a refinement from X-ray powder diagram provides the atomic positions; the compound is isotypic with CdP₄.

En essayant de préparer des polyphosphures ternaires de lithium et d'un métal divalent, nous avons constaté qu'en partant des composés de formule générale LiMP (M = MgZn, Cd) (1), il ne nous était pas possible d'incorporer du phosphore dans le réseau de ces derniers.

En effet, il se forme un polyphosphure métallique à côté d'une phase binaire Li-P, en général LiP (2) ou Li_2P_5 (3). Dans le cas de Zn, il s'agit de ZnP_2 (4) alors que pour Cd, on observe CdP₂ (5) ou CdP₄ (6) selon la stoechiométrie.

Une phase riche en phosphore dans le système Mg-P n'ayant pas encore été mise en évidence, nous avons envisagé d'étudier la phosphuration de Mg_3P_2 , seul binaire de ce système connu à ce jour. Cette phosphuration a conduit à MgP₄.

1. Preparation de MgP₄

 MgP_4 est préparé, en ampoule scellée de quartz, par action du phosphore vapeur sur Mg_3P_2 . Celui-ci est préparé à partir des éléments dans un réacteur permettant le passage des vapeurs de phosphore sur du magnésium porté à 700°C (7). Après une montée progressive de la température les deux réactifs sont maintenus dans un gradient 500–650°C, le phosphore étant au point froid.

La réaction peut être menée en plusieurs étapes successives avec broyages intermédiaires. Dans ce cas, les quantités de phosphore ajoutées sont entièrement absorbées, et l'analyse radiocristallographique indique la présence, à côté de Mg_3P_2 , d'une nouvelle phase.

La phosphuration de Mg_3P_2 est totale lorsque, après réaction, du phosphore en excès reste encore dans l'ampoule. Les rayons X indiquent alors la présence de la phase nouvelle seule.

Celle-ci apparaît sous la loupe binoculaire comme une poudre noire bien cristallisée avec des reflets métalliques. Cette poudre est insensible à l'humidité, et résiste aux attaques à froid par les acides alors que Mg_3P_2 est attaqué par l'humidité de l'air et doit être manipulé uniquement en atmosphère sèche.

Analyse du Composé

Sa mise en solution s'est faite à chaud, à l'aide de HNO_3 concentré, en présence de brome pour compléter l'oxydation du phosphore. Après attaque, les phosphates sont dosés par précipitation du phosphomolybdate

Copyright © 1975 by Academic Press, Inc. All rights of reproduction in any form reserved. Printed in Great Britain

suivie d'une acidimétrie. Le magnésium est dosé par précipitation du phosphate ammoniaco magnésien, suivie d'une volumétrie.

Les résultats observés sont les suivants: P: 84.2%; Mg: 16.9%. On lui a donc attribué la formule MgP₄ (P: 83.6% et Mg: 16.4%).

II. Structure de MgP₄

L'étude structurale de MgP_4 s'est faite en deux temps. En premier lieu, la microdiffraction électronique a donné une maille et un groupe d'espace; ensuite, la diffraction des rayons X sur poudre a montré une isotypie entre MgP_4 et CdP_4 (6).

1. Microdiffraction Électronique

Préparation des échantillons. La poudre à étudier est finement broyée puis mise en suspension dans l'acool éthylique. Après décantation pendant quelques minutes, une goutte de la suspension est déposée sur une grille recouverte d'une pellicule de collodion sur laquelle a été vaporisée une couche d'aluminium d'une centaine d'angströms comme étalon interne. L'étude est faite à l'aide

Cliché 1

Cliché 2 FIG. 1. Microdiffraction electronique sur MgP₄.

Cliché 3

Cliché 4 FIG. 1—continued

d'un microscope électronique JEM 100 U muni d'une platine goniométrique ALG.

Resultats. Le seul élément de symétrie que nous pouvons mettre en évidence est un miroir comme l'indique le cliché 1, les distances interréticulaires les plus courtes étant, respectivement, 5.00 et 4.96 Å. La maille élémentaire est donc certainement monoclinique, le cliché précédent correspondant à un plan du réseau réciproque admettant l'axe b^* comme axe de zone. Outre les deux valeurs, précédemment citées, les distances interréticulaires les plus courtes que nous pouvons mettre en 4 évidence sont, respectivement, 7.44 Å (cliché 2), 5.06 et 4.12 Å (cliché 3), 4.52 Å (cliché 4). En utilisant la rangée à 7.44 Å comme axe de rotation, il n'est pas possible de mettre de miroir en évidence. Il s'agit donc vraisemblablement soit de l'axe à* soit de l'axe c*, la distance 7.44 Å représentant alors $a \sin \beta$ ou $c \sin \beta$. C'est la seconde solution que nous retenons. D'autre part, au cours de l'expérience précédente, la tache la plus proche de la rangée que nous pouvons observer se situe à 3.60 Å (cliché 2). La solution la plus simple consistant à lui attribuer les indices 100 est à

rejeter car elle ne permet pas d'interpréter le cliché 1. Afin d'avoir les indices les plus petits possibles, nous essayons la solution 110.

D'autre part, en tournant autour de la direction dont la distance interréticulaire la plus courte vaut 5.06 Å, il n'est pas possible de caractériser de miroir. Cette rangée peut correspondre à l'axe a^* du réseau réciproque. On a alors $a \sin \beta = 5.06$ Å.

Nous avons alors trois équations

$$a\sin\beta = 5.06\,\text{\AA} \tag{1}$$

$$c\sin\beta = 7.44\,\text{\AA}$$
 (2)

$$1/3,60^2 = 1/(a^2 \sin^2 \beta) + 1/b^2.$$
 (3)

A partir des Éqs. (1) et (3), il est possible de déterminer la valeur de *b*. Dans cette hypothèse, le calcul donne b = 5.10 Å. Il est nécessaire d'avoir une équation supplémentaire pour calculer la valeur de β . Avec nos hypothèses, le cliché 2 s'indexe comme indiqué Fig. 1. La tache correspondant à la distance 3.50 Å s'indexe $\overline{111}$. On peut, en comparant avec la raie 110, calculer la valeur de β . On trouve $\beta = 81^{\circ}$.

Les paramètres de la maille élémentaire seraient donc: a = 5.15 Å; b = 5.10 Å, $\beta = 81^{\circ}$; c = 7.50 Å. Les distances interréticulaires calculées à partir de ces paramètres permettent d'indexer tous les clichés de microdiffraction tout en vérifiant les règles d'addition des indices. D'autre part, les angles calculés entre les taches de diffraction concordent avec les valeurs mesurées.

De plus, lorsqu'on calcule les angles entre les différents clichés obtenus, un accord satisfaisant est observé avec ceux mesurés comme l'indique le Tableau I.

On peut donc considérer que les contours de la maille sont corrects.

D'autre part, il n'apparaît pas d'extinctions systématiques dues au mode de réseau. Celui-ci serait donc P.

2. Diffraction des Rayons X

La maille donnée par diffraction électronique est très proche de celle de CdP₄. Les paramètres affinés par une méthode de moindres carrés à partir du diagramme de poudre (14) sont: $a = 5.13_1$; $b = 5.09_0$; $c = 7.47_6$, $\beta = 81.17^\circ$.

TABLEAU I

Ax	es			
Reference		Øcalcd	Ømesd	
1 10	<u>3</u> 31	18°30′	19°	
Ī10	$\overline{2}2\overline{1}$	26°30'	26°30′	
Ī10	112	60°30′	56°30′	
Ī10	ī1 ī	43°30′	42°	
Ī10	332	33°	31°30′	
201	111	33°30′	29°30′	
201	312	15°	14°	
201	423	19°30′	19°	
201	311	-17°30′	-18°	
011	021	19 °	17°30′	
011	012	-15°	-16°30′	
111	411	33°30′	33°	
111	311	27°30′	25°30′	
1 ī 1	211	19°	18°30′	
111	322	10°	11°	
01Ī	322	39°30′	43°	
011	111	32°30′	30°30′	
011	122	16°30′	16°	

L'analogie entre les diagrammes de poudre de ces produits nous a donc amenés à envisager l'isotypie des deux composés.

En partant de cette hypothèse, nous avons placé les atomes de Mg et de P, respectivement, dans les mêmes sites que ceux de Cd et de P dans CdP₄, c'est-à-dire dans les sites 2*a* et 4*e* du groupe d'espace P21/c (N⁰. 14). La densité mesurée d = 2.56 implique, comme dans CdP₄, deux motifs formulaires par maille (valeur calculée: 2.55).

Les intensités ont été mesurées par détermination de la surface des raies obtenues à l'aide d'un diffractomètre à compteur (rayonnement: $K\alpha Co$) monté en reflexion.

A l'aide d'un programme d'affinement des structures par une méthode de moindres carrés (13) à partir des intensités obtenues sur poudre, nous avons déterminé les positions atomiques finales suivantes (Tableau II).

TABLEAU II

Atome	Site	x	у	Z
Mg P1	2a 4e	0 0.248	0 0.294	0 0.746
P_2	4e	0.398	0.888	0.402

hkl	I _{mesd}	Icaled
100	11.6	13.6
011	4.1	4.8
002	3.1	2.7
110	23.2	23.4
111	6.6	7.8
102	11.7	11.0
-111	100.0	97.8
012	19.8	18.9
-102	.0	2.3
112	85.0	80.9
020	.0	1.0
200	.0	1.1
-112	8,7	8.2
021	0.	.0
(120)		
202	19.3	20.2
(211		
121 013	22.4	22.0
113	.0	.1
$ \begin{array}{c} -1 & 2 & 1 \\ 0 & 2 & 2 \\ -2 & 1 & 1 \end{array} $	31.0	25.4

TABLEAU III

Le facteur résiduel obtenu est R = 0.08. Le Tableau III montre les intensités calculées et observées.

Description de la structure. Les structures de MgP_4 et de CdP_4 sont donc identiques. Les distances interatomiques observées sont les suivantes:

Mg-2P ₁ : 2.59 Å	$P_1 - P_2$: 2.18 Å
Mg–2P ₁ : 2.61 Å	P ₁ -P ₂ : 2.20 Å
Mg-2P ₂ : 2.85 Å	$P_1 - P_2$: 3.30 Å
• -	$P_1 - P_2 : 3.45 \text{ Å}$
	$P_1 - 2P_1 : 3.59 \text{ Å}$
	$P_1 - 2P_1 : 3.64 \text{ Å}$
	$P_2 - P_2$: 2.24 Å
	$P_{2} - 2P_{2}: 3.47 \text{ Å}$

On constate que les distances P–P et Mg–P correspondent très sensiblement à la somme des rayons covalents de Pauling, compte tenu d'une contraction de 7% du rayon du magnésium du fait de sa coordinence. Il s'agit donc d'un réseau d'atomes de phosphore et de magnésium liés entre eux par covalence.

TABLEAU IVª

$\left\{ \begin{array}{c} 2 \ 1 \ 2 \\ 1 \ 2 \ 2 \end{array} \right\}$	6	4.3
$\begin{pmatrix} -2 & 0 & 2 \\ -1 & 1 & 3 \end{pmatrix}$	33.1	35.8

^a Les intensités calculées indiquées dans le tableau ci-dessus correspondent à la somme des intensités des différentes raies de diffraction pouvant se chevaucher (indiquées par une accolade).

En fait, dans MgP₄ les coordinences et les distances caractéristiques P–P sont identiques à celles qu'on observe dans CdP₄. Si bien que la discussion faite par Krebs sur la structure de ce dernier est encore largement prévalente dans le cas de MgP₄.

Le magnésium et le phosphore sont en coordinence octaédrique et tetraédrique, légèrement déformées. On constate d'autre part, d'après les distances interatomiques, que chaque atome de phosphore P_1 est lié à 2 Mg et 2 P_2 alors que les atomes de phosphore P_2 , suffisamment éloignés des magnésiums, sont liés uniquement aux autres atomes de P.

Notons également que la remarque de Krebs à propos de la structure de CdP_4 s'applique à fortiori ici: il y a deux types de polyèdres de coordination (octaèdres pour Cd et tétraèdres pour P) car deux types de tétraèdres de taille assez différente ne peuvent remplir l'espace sans laisser de vides considérables. Or avec Mg et P les tétraèdres auraient été encore plus différents qu'avec Cd et P.

Alors que les autres systèmes alcalinoterreux-phosphore comportent un grand nombre de phases intermédiaires (9, I0), il est difficile d'isoler dans le système Mg-P des compositions intermédiaires entre Mg₃P₂ et MgP₄. Ceci rapproche les deux systèmes Mg-P et Mg-As (8).

Enfin, il est à signaler que MgP₄ occupe, avec CdP₄, une place particulière parmi les polyphosphures de formule générale MgP₄. Alors que leurs homologues CoP₄ (11), MoP₄ (11) et ZnP₄ (12) nécessitent pour leur préparation l'emploi de hautes pressions, ces deux composés sont obtenus sous des pressions normales de phosphore.

Références

- I. A. EL MASLOUT, J. P. MOTTE, ET C. GLEITZER, J. Solid State Chem. 7, 250 (1973).
- 2. R. JUZA ET K. LANGER, Naturwiss. 54, 225 (1967).
- H. G. V. SCHNERING ET W. WICKELHAUS, Naturwiss. 59, 78 (1972).
- 4. M. RUBENSTEIN ET P. J. DEAN, J. Appl. Phys. 41, 1777 (1970).
- 5. J. BERAK ET Z. PRUCHNIK, Rocz. Chem. 42, 1403 (1968).
- H. KREBS, K. H. MÜLLER, ET G. ZÜRN, Z. Anorg. Allgem. Chem. 285, 15 (1956).

- M. V. STACKELBERG ET R. PAULUS Z. Phys. Chem. 22 (B), 305 (1933).
- 8. K. PIGON, Helv. Chim. Acta 44, 30 (1961).
- 9. K. E. MAASS, Z. Anorg. Allgem. Chem. 374, 1 (1970).
- 10. K. E. MAASS, Z. Anorg. Allgem. Chem. 374, 19 (1970).
- 11. W. JEITSCHKO ET P. C. DONOHUE Acta Cryst. 28(B) 1893 (1972).
- 12. Y. TANAKA, Rev. Phys. Chem. Japan, 38, 151 (1968).
- 13. A. COURTOIS ET J. PROTAS, Recueil de Programmes Cristallo., Publication Interne au Laboratoire de Minéralogie et Cristallographie, Nancy, 1973.